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1. Introduction

The concept of positively associated random variables (PA) was introduced by Lehmann (1966)
and was generalized and studied by Esary et al. (1967). Since then there have been many papers
published on this subject, and also its extensions and some related applications, for instance, by
Karlin and Rinott (1980a, b), Shaked (1982), Newman and Wright (1982), Wood (1983), Burton
et al. (1986), Cox and Grimmett (1984), Roussas (1991, 1994) and Newman (1980) among others.

The concept of negatively associated random sequence (NA) was introduced by Joag-Dev and
Proschan (1983) although a very special case was >rst introduced by Lehmann (1966). The former
derived several important properties about NA sequences and also discussed some applications in
statistics. Compared to PA, the study of NA sequence has received less attention in the literature.
There are some applications of NA in the areas of Probability, reliability and multivariate analysis.
Readers may refer to Karlin and Rinott (1980b), Ebrahimi and Ghosh (1981), Block et al. (1982),
Newman (1984), Joag-Dev (1990), Joag-Dev and Proschan (1983), Matula (1992) and Roussas
(1994) among others.

It is to be noted that NA is related to but is not simply the dual of PA. There are also several kinds
of negative dependence between random variables. However, as it was pointed out by Joag-Dev and
Proschan (1983), NA has one distinct advantage over the other known types of negative dependence:
some closure property holds for NA, but not for the other three types of negative dependence. They
have also derived other important properties and studied some useful applications.

Recently, some authors focused on the problem of limiting behavior of partial sums of NA se-
quences. Su et al. (1996) derived some moment inequalities of partial sums and a weak convergence
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for a strong stationary NA sequence. Lin (1997) set up an invariance principal for NA sequences.
Su and Qin (1997) also studied some limiting results for NA sequences. More recently, Liang and
Su (1999) and Liang (2000) considered some complete convergence for weighted sums of NA
sequences. The case of Cesaro sums was also considered.

Those results, especially some moment inequality by Yang (2000), undoubtedly propose impor-
tant contributions to both theoretical developments and practical applications for the NA sequence.
However, there still exists some diIculty in this area. For instance, so far we do not have Levy-type
maximal inequality for the NA sequence, but we do so for the PA sequence, which can be stated
as follows:

P
{

max
16i6n

| Si|¿ csn

}
6 2P{|Sn|¿ (c −

√
2)sn};

where c¿
√
2; s2n =Var Sn.

As a part of the contribution for the development of such an important inequality, in this paper, we
construct a maximal inequality for the partial sum of NA sequence. Through this maximal inequality,
it is not only expected that some known results can be improved, but also that a useful result of
complete convergence of NA partial sum can be obtained.

2. Main results

Random variables X1; X2; : : : ; Xn are said to be negatively associated (NA) if for every pair of
disjoint subsets T1; T2 of {1; 2; : : : ; n},

Cov(f1(Xi; i∈T1); f2(Xj; j∈T2))6 0;

where f1 and f2 increase (or decreasing) for every variable, such that this covariance exists. A
sequence of random variables Xj; j∈ J is said to be negatively associated if every >nite subfamily
of it is negatively associated.

For convenience, let ‘(x) and �(x) both denote non-negative monotone non-decreasing functions
throughout the paper. Denote inv �(x) ≡ inf{u :�(u) = x}. Let the partial sums be denoted by
Si =

∑i
j=1 (Xj − EXj); i = 1; : : : ; n.

Theorem 2.1. Let X1; X2; : : : ; Xn be an identically distributed NA sequence. If; for p¿ 2
(A1) E|X1|p¡∞;
(A2) x¿C0(n(log n)p

2
)1=2; n¿max{log2p2+p + n; expC−1

0 161=pE1=p|X1|p} for some constant C0;
then,

P
{

max
16i6n

|Si|¿ x
}
6C3n(x log n)−pE|X1|pI(|X1|¿x log−p n)

+C3n exp{−C1 logp n+ C2}
6Cn(x log n)−p + Cn exp{−C1 logp n};
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where C; C1, and C3 are positive constants which may be related to p and C0 but not to n; C2 ≡
4C−2

0 {EX 2
1 I(|X1|6 x log−p n) + EX 2

1 I(|X1|¿x log−p n)}.

As an application of Theorem 2.1, we can deduce the following:

Theorem 2.2. Let X1; X2; : : : ; Xn be an identically distributed NA sequence. If; for some �¿ 0 and
p¿ 2;
(B1) n(log n)p

2
6 (inv �(�n))2 for su;ciently large n;

(B2)
∑∞

n=1 ‘(n)(inv �(�n)log n)
−p¡∞;

(B3)
∑∞

n=1 ‘(n) exp(−� logp n)¡∞;
and condition (A1) is satis<ed; then;

∞∑
n=1

‘(n)
n
P
{

max
16i6n

�(|Si|)¿ �n
}
¡∞: (2.1)

Theorem 2.3. Let X1; X2; : : : ; Xn be an identically distributed NA sequence satisfying all conditions
of Theorem 2:2; then

∞∑
n=1

‘(n)− ‘([n=2])
n

P
{
sup
i¿n

�(|Si|)
i

¿ �
}
¡∞: (2.2)

Taking x = inv �(�n) in Theorem 2:1, it follows from (B1), (B2), and (B3), we can conclude
Theorem 2:2.

By applying the same technique for the derivation of (8.3.19) in Lin and Lu (1997, p. 190), we
can obtain (2.2) directly from (2.1) and this proves Theorem 2.3.

If we take ‘(n) = np�−1; �(n) = n1=�, 1=2¡�6 1, then we can immediately have the following.

Corollary 2.4. Let X1; X2; : : : ; Xn be an identically distributed NA sequence with E|X1|p¡∞; p¿ 2.
Then; for the given �¿ 0 and for 1=2¡�6 1; we have

∞∑
n=1

np�−2P
{

max
16i6n

|Si|¿ �n�
}
¡∞ (2.3)

and

∞∑
n=1

np�−2P
{
sup
i¿n

|Si|=i�¿ �
}
¡∞: (2.4)

Remark. The condition of identical distribution can be weakened slightly to be uniformly bounded
in probability. If we take �=1; then Corollary 2.4 becomes Theorem 2 in Su and Qin (1997); from
which it can be seen that (A1) is a necessary condition for (2.2).
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3. Proof of Theorem 2.1

We need a result of Theorem 2 in Su et al. (1996) as a lemma which can be stated as follows:

Lemma 3.1 (Su et al., 1996). Let X1; X2; : : : ; Xn be an NA sequence with EXi = 0. For p¿ 2; if
�p ≡ supE|Xn|p¡∞; then there exists some constant Kp¿ 0 depending only on p; such that for
any integer n;

E
(

max
16k6n

|Sk |p
)
6Kp{n�p + (n�2)p=2}:

Denote Tj ≡ Xj − EXj; cn ≡ x log−p n. For 16 i6 n; let

S1i =
i∑
j=1

{TjI(|Tj|6 cn) + cnI(Tj ¿cn)− cnI(Tj ¡− cn)} ≡
i∑
j=1

T1j;

S2i =
i∑
j=1

TjI(Tj ¡− cn) ≡
i∑
j=1

T2j;

S3i =
i∑
j=1

TjI(Tj ¿cn) ≡
i∑
j=1

T3j;

S4i =
i∑
j=1

cnI(Tj ¡− cn);

and S5i =
i∑
j=1

(−cn)I(Tj ¿cn):

Then; we have

P
{

max
16i6n

|Si|¿ x
}
6P

{
max
16i6n

|S1i|¿ x=3
}

+P
{

max
16i6n

|S2i|¿ x log n
}
+ P

{
x6 max

16i6n
|S2i|¡x log n

}

+P
{

max
16i6n

|S3i|¿ x log n
}
+ P

{
x6 max

16i6n
|S3i|¡x log n

}

+P
{

max
16i6n

|S4i|¿ x logp
2
n
}
+ P

{
x=36 max

16i6n
|S4i|¡x logp

2
n
}

+P
{

max
16i6n

|S5i|¿ x logp
2
n
}
+ P

{
x=36 max

16i6n
|S5i|¡x logp

2
n
}

≡ I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9: (3.1)
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In the following, the proof of Theorem 2.1 is divided into >ve parts.
(a) Estimates of I2 and I4
It follows from conditions (A1) and (A2) that

max
16i6n

|ES3i|6 2nE|X1|p(x log−p n)1−p6 x=8; (3.2)

where we use the fact that log n¿C−1
0 161=pE1=p|X1|p.

Denote Uj = T3j − ET3j, by (3.2),

I4 = P{S3n¿ x log n}6P{S3n − ES3n¿ x log n=2}: (3.3)

Conditions (A1) and (A2) yield the following:

sup
j
EU 2

j 6CE|X1|pI(|X1|¿cn)[x log−p n]2−p

6CE|X1|pI(|X1|¿cn)Cn−(p−2)=2:

Note that the right-hand side (RHS) of (3.3) equals P{∑n
j=1 Uj¿ x log n=2} and p(4 − p)6 4

for p¿ 2, again it follows from Lemma 3.1 and (A1) that

I46C(x log n)−p
{
n sup

j
E|Uj|p +

(
n sup

j
EU 2

j

)p=2}

6Cn(x log n)−p{Cn+ (n1−(p−2)=2E|X1|pI(|X1|¿x log−p n))p=2}

6Cn(x log n)−p{n+ (np(4−p)=4Ep=2|X1|pI(|X1|¿x log−p n))}

6Cn(x log n)−p{E|X1|pI(|X1|¿x log−p n)}p=2

6Cn(x log n)−pE|X1|pI(|X1|¿x log−p n): (3.4)

Analogously, we can also obtain

I26Cn(x log n)−pE|X1|pI(|X1|¿x log−p n) (3.5)

(b) Estimates of I3 and I5
Note that, in I5; max16i6n|S3i|=S3n ¡x log n, and the number of non-zero terms in the summand

S3n is given by

|J | ≡ |{j:Xj − EXj ¿x log−p n}|
6 [logp+1 n] + 1

with probability one, where |J | denotes the cardinality of set J .



188 W.-T. Huang, B. Xu / Statistics & Probability Letters 57 (2002) 183–191

By (A2), noting that n¿ log2p
2+p n, by the Markov inequality, we have

I56P




n∑
j=1

(Xj − EXj)I(Xj − EXj ¿x log−p n)I(j∈ J )¿x




6
n∑
j=1

E{|Xj − EXj|I(|Xj − EXj|¿x log−p n)I(j∈ J )}x−1

6E


|X1 − EX1|I(|X1 − EX1|¿x log−p n)

n∑
j=1

I(j∈ J )

 x−1

6C logp+1 nE|X1|pI(|X1|¿x log−p n)(x log−p n)1−px−1

6Cn(x log n)−pE|X1|pI(|X1|¿x log−p n): (3.6)

Analogously, we can also conclude that

I36Cn(x log n)−pE|X1|pI(|X1|¿x log−p n): (3.7)

(c) Estimates of I6 and I8
Again it follows from the Markov inequality that

I66P




n∑
j=1

cnI(Tj ¡− cn)¿ x logp
2
n




6
n∑
j=1

cnP{|Tj|¿cn}(x logp2
n)−1

6 n log−p nE|X1|pI(|X1|¿x log−p n)(x log−p n)−p log−p
2
n

6Cn(x log n)−pE|X1|pI(|X1|¿x log−p n): (3.8)

Analogously, we can also conclude that

I86Cn(x log n)−pE|X1|pI(|X1|¿x log−p n): (3.9)

(d) Estimates of I7 and I9.
Similarly, in I7, we note that max16i6n |S4i| = S4n ¡x logp

2
n and the number of non-zero terms

in the summand S4n is given by the cardinality of the following >nite set J1, i.e.

|J1|= |{j:Xj − EXj ¿x log−p n}|6 [logp
2+p n] + 1:
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Again, by (A2), the fact that n¿ log2p
2+p n, and the Markov inequality, one obtains

I76CcnE


I(|T1|¿cn)

n∑
j=1

I(j∈ J1)

 x−1

6C(log−p n)(logp(p+1) n)E|X1|pI(|X1|¿x log−p n)(x log−p n)−p

6Cn[x log n]−pE|X1|pI(|X1|¿x log−p n): (3.10)

Analogously, we have

I96Cn[x log n]−pE|X1|pI(|X1|¿x log−p n): (3.11)

Finally, we give the following:
(e) Estimate of I1
Note that ET1j + ET2j + ET3j + EcnI(Tj ¡− cn) + E(−cn)I(Tj ¿cn) = 0, by (3.2), we have

max
16i6n

|ES1i| = max
16i6n

|ES2i + ES3i + ES4i + ES5i|

6 2 max
16i6n

|ES3i|+ 2ncnE|X1|pc−pn
6 x=6 (by condition (A2)):

Denote Vj = T1j − ET1j. We have

I16P
{

max
16i6n

|S1i − ES1i|¿ x=6
}

6 n max
16i6n

P



∣∣∣∣∣∣
i∑
j=1

Vj

∣∣∣∣∣∣¿ x=6




= n max
16i6n

P



∣∣∣∣∣∣
i∑
j=1

Zjn

∣∣∣∣∣∣¿ (log n)p=12


 ; (3.12)

where Zjn = Vj logp n=2x(16 j6 n). Note also that T1j is a non-decreasing function of Tj, so that
{Zjn}(16 j6 n) is an NA sequence. Since |Vj|6 2x log−p n, so |Zjn|6 1, and also exp(Zjn) is
an NA sequence. Using the fact that E exp(T )6 exp(ET + ET 2), when |T |6 1 a.s, and EZjn =
0(16 j6 n), it follows that

E


exp


 i∑

j=1

Zjn




6

i∏
j=1

E{expZjn}

6
i∏
j=1

exp{EZjn + EZ2
jn}= exp




i∑
j=1

EZ2
jn


 :



190 W.-T. Huang, B. Xu / Statistics & Probability Letters 57 (2002) 183–191

Replacing Zjn by −Zjn, we also have

E


exp


−

i∑
j=1

Zjn




6 exp




i∑
j=1

EZ2
jn


 :

Thus, by (A2), for 16 i6 n, the following is obtained:

i∑
j=1

var Zjn =
i∑
j=1

EZ2
jn

= (log2p n)x−2
i∑
j=1

EV 2
j =4

= (log2p n)x−2
i∑
j=1

E(T1j − ET1j)2=4

6 (log2p n)x−2
i∑
j=1

ET 2
1j

6 2(log2p n)x−2
i∑
j=1

{ET 2
j I(|Tj|6 cn) + c2nP(|Tj|¿cn)}

6 2(log2p n)x−2n{ET 2
1 I(|T1|6 cn) + c2nET

2
1 I(|T1|¿cn)c−2

n }
6 4c−2

0 {EX 2
1 I(|X1|6 cn) + EX 2

1 I(|X1|¿cn)}
≡ C2 (say): (3.13)

Therefore, we have

P



∣∣∣∣∣∣
i∑
j=1

Zjn

∣∣∣∣∣∣¿ logp n=12


6E


exp


 i∑

j=1

Zjn




 exp(−C logp n)

6 exp




i∑
j=1

EZ2
jn


 exp(−C logp n)

6 exp{−C logp n+ C2}: (3.14)

Combining (3.12), we can conclude that

I16Cn exp{−C logp n+ C2}: (3.15)

Now, combining steps (a)–(e), we complete the proof of Theorem 2.1.
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